
 
 

Refactoring Tools and Complementary Techniques  
 
 

Martin Drozdz1, Derrick G Kourie2, Bruce W Watson2, Andrew Boake3 
Espresso Research Group, Department of Computer Science 

University of Pretoria, Pretoria, South Africa 0001 
1martind@eject.co.za, 2{dkourie, watson}@cs.up.ac.za, 3andrew@systemiclogic.com 

 
 

Abstract 
 

Poorly designed software systems are difficult to 
understand and maintain. Modifying code in one place 
could lead to unwanted repercussions elsewhere due to 
high coupling. Adding new features can cause further 
quality degradation to the code if proper design and 
architectural concerns were not implemented. 
Development in a large enterprise system with such 
attributes will, over time, lead to a myriad of concerns 
unless the system is periodically overhauled or refactored 
in some way.  

Refactoring can aid the developer to improve the 
design of the code and to make it cleaner, without 
changing its behaviour. This study provides answers for 
some of the questions on refactoring. A refactoring tool 
survey is given. The IDEs surveyed include some of the 
most popular commercial and open source offerings from 
IntelliJ’s IDEA, IBM’s Eclipse and Sun’s Netbeans. We 
also explain a way to automatically find targets for 
refactorings via automatic detection of code smells from 
static code analysis. Concerns on viewing compiler 
refactorings as a fully automated refactorings are raised. 
We will perform a critical evaluation of refactoring by 
surveying these tools. 

 
1. Introduction 
 

This section contains answers to the what, why and 
where questions pertaining to refactoring. 

 
1.1. What is refactoring? 

 
One definition of the word “factor” means to influence 
something. To refactor means to re-influence something 
that already exists. There is however a more precise 
meaning in the computer science context. In order to 
successfully refactor a program, one needs to change (and 
thus re-influence) the program in such a way as to 
improve the design and simultaneously preserve its 
behaviour.  

 
1.2. Why refactor? 
 

One needs to know how refactoring fits into the 
software engineering process in order to see how one can 
benefit from it.  

Continuous design [Shore 2004], which utilizes 
refactoring, allows one to add more flexibility into the 
design, by adding to an initially simple design as the need 
arises, instead of having a big upfront design. Thus the 
design will evolve as the code grows. There is a shift 
from building software towards growing it. The process 
of refactoring can be used to contribute to these evolving 
states of the code. 

 [Garlan 1994] mentions that: “Object-oriented 
systems also have some disadvantages. The most 
significant is that in order for one object to interact with 
another (via procedure call) it must know the identity of 
that other object. This is in contrast, for example, to pipe 
and filter systems, where filters do need not know what 
other filters are in the system in order to interact with 
them. The significance of this is that whenever the 
identity of an object changes it is necessary to modify all 
other objects that explicitly invoke it. “  

Automated refactorings manage to soften the 
disadvantages of the object orientated architectural style, 
by not only modifying the part of the object that is 
invoked, but all of the invokers as well. Code 
dependencies are seamlessly resolved as the refactoring 
tool will usually utilize an abstract syntax tree (AST) or 
code database. The AST or code database will hold the 
crucial code dependencies that need to be updated 
whenever a refactoring is made. 

 
1.3. Where to refactor? 

 
Refactoring can be used in different contexts. For 

example: to improve the design and code quality of 
existing systems; to help evolve the design of systems 
dynamically through incremental development with 
practises such as test driven development and agile 

6851-4244-0212-3/06/$20.00/©2006 IEEE



methodologies, thereby negating the need for a big 
upfront design; to understand how existing code works 
[Fowler 1999]; to manage change in a software 
organisation [Beck 2000]; to perform refactoring at an 
architectural level [Van Kempen 2005]; and to refactor 
code, with design patterns as targets of the refactoring 
[Kerievsky 2004]; 
 
1.4. Recent Research 
 

 [Mens 2004] provides a thorough look at research in 
the domain of software refactoring and software 
restructuring. In the survey it is mentioned that although 
commercial refactoring tools have begun to proliferate, 
research into software restructuring and refactoring 
continues to be very active, and remains essential to 
reveal and address the shortcomings of these tools. The 
following tool survey takes a closer look at such 
refactoring tools. A critical analysis is done in order to 
evaluate the IDEs that implement these tools and how 
well they are integrated into the IDE. 
 
1.5. Summary 
 

A continuous design process helps one to evolve a 
design so as to make the maintenance phase less costly by 
adding more flexibility and reusability into the code. 
Continuous design can also be used to solve any design 
issues overlooked previously. Refactoring plays an 
important role in continuous design and certainly has 
benefits, but the process must be adequately managed to 
ensure that it is done properly. Various refactoring tools 
are available. A well-chosen refactoring tool can not only 
facilitate the refactoring task, but can also support the 
management of the refactoring endeavour. The next 
section gives a tool survey of the most prominent Java-
based refactoring tools. 
 
2. Tool Survey 
 

This is the main part of our paper in which we discuss 
the tool survey performed on various IDEs with 
refactoring tool support. This research was conducted in 
both an academic and commercial environment during the 
first half of 2005 and includes motivations for Java as the 
language of choice, the IDEs selected for the survey as 
well as a detailed analysis of the IDEs. 

 
2.1. Language Choice 
 

This article sees Java as the preferred language for 
refactoring, mainly due to its open source nature, its 
popularity and the amount of refactoring support it has 

gained in the form of books, articles and automated tools 
available for it. 

Refactorings have spread into many different 
languages, but Java remains the language with the most 
refactoring tool support, with C# lagging somewhat 
behind. A list of recent refactoring tools is available for 
several languages [Fowler 2005]. 

 
2.2. Survey Motivation 

 
The aim of this tool survey was to evaluate the 

refactoring tool support in common Open Source and 
commercial IDEs. For the purpose of this survey we 
chose IBM’s Eclipse, IntelliJ’s IDEA and Suns Netbeans.  

There is currently a choice between manual and 
automated refactorings. Refactorings tools allow one to 
automate refactorings. The IDE can further automate this 
by searching for targets of refactorings by using either 
static analysis or a compiler approach which will be 
introduced later.  

These issues can influence the ease of refactoring 
greatly. We want to find practical, inexpensive solutions 
for enterprises that wish to evolve their designs through 
refactoring. 

The automated refactorings in most modern IDEs 
allow one to preview the resulting impact the refactorings 
will have on the code. The preview also shows warnings 
when code could be negatively impacted. The automated 
refactorings take the entire project code under 
consideration. This saves one a lot of time compared to 
manual refactorings which are error prone and rely on the 
compilation process to highlight errors caused by 
unchecked dependencies or the like. 

 
2.3. Findings 
 

Netbeans 4.0 was severely lacking in its refactoring 
abilities. Even with the recent Jackpot project headed by 
James Gosling which was meant to boost such features, 
Netbeans only supports 4 refactorings at the moment. It 
lacks even the extract method refactoring which is used as 
a benchmark for refactoring support.  

Eclipse 3.1 and IDEA 4.5 both support around 30 
similar refactorings. IDEA 5.0 however, is far ahead of 
Eclipse in terms of ease of use and productivity of 
refactoring.  

Although the number of refactorings that an IDE 
supports is important, there is one aspect in which IDEA 
is the clear winner. IDEA has an array of static code 
analysis tools (almost 500 in IDEA 5.0) which enable one 
to pick up hotspots pertaining to abstraction and 
encapsulation issues, method and class metrics, class 
structure, performance issues and many more. Some of 
these issues map directly to code smells [Fowler 1999]. 

686



The latter are, of course, candidates for refactorings. 
Fowler [1999] explains code smells in detail and also 
provides several refactorings to eradicate these smells.  

From the nearly 500 static code analysis techniques in 
IDEA we managed to sift out 10 code smell checks. The 
more familiar we became with code smells; the easier it 
was to map the static code checks in IDEA to code smell 
checks. Code smells require one or more refactorings in 
order to be removed. Some IDEs do not support all of the 
refactorings, which means that manual refactorings will 
have to be attempted instead.  
Manual refactorings are error-prone as the developer 
cannot automatically detect the many dependencies that 
need to be fixed when a refactoring is made. For example 
take the ‘Change method signature’ refactoring which can 
remove or add a parameter in a method over an entire 
project. A developer will manually have to search for 
places where the method is called and change the 
methods signature in each place, while automatic 
refactoring does this work for him, more reliably and 
accurately. The same concept goes for renaming a 
package or class. Why do it manually in 20+ classes when 
the refactoring tool can do it with one click? 

Our analysis was done on two Java J2EE financial 
trading projects that are currently in production. IDEA 
4.5 was used to analyse the code base. IDEA 4.5 has 
many categories in which the static analysis checks are 
grouped into in order to allow one to focus on specific 
problem areas. For example, one will find a category 
called abstractions issues with 14 static analysis checks. 
As a proof of concept the static analysis checks that 
where of most interest to us in this category where the 
ones pertaining to the following 3 checks that we 
individually selected and which could be mapped to code 
smells.  

1. Feature Envy – When a method calls other 
methods from another object or class more than 3 times, it 
suggests that some functionality of the caller should 
rather be in the class being called. The methods in this 
code smell context would be either class or object 
instance methods. 

2. Magic Number – This refers to a literal value that 
is used directly, not through the use of a constant 
variable. This did not seem very serious at first, but we 
often found this to be a very irritating code smell. Magic 
Numbers should be linked to classes as constants and 
declared as public static final variables. This ensures that 
other classes could make use of the variables also ensures 
that the Magic Number can be associated with a 
meaningful variable name which describes its purpose 
more clearly. Magic Numbers thus lead to much 
confusion and are a very serious code smell, in large 
projects, where they can cause many errors. 

3. Switch Statement – A switch statement is very 
easy to detect, even without a fancy tool. All that is 

needed is to search for the string literal “switch” in code. 
Generally the lack of switch statements is a sign of good 
object orientated code, since most switch statements 
should have been replaced with polymorphism. 

Code smells recognised by [Fowler 1999] are not 
necessarily the only code smells in existence, but it is not 
possible to mention all the possible code smells as new 
smells emerge very quickly as tool support increases for 
refactoring.  

Some unrecognised code smells already have 
legitimate refactorings. For example IDEA can search for 
class fields that have public or package scope. These are 
candidates for the refactoring ‘encapsulate field’. There is 
a check for ‘if statements’ with too many branches, which 
can be refactored using ‘Replace nested conditional with 
guard clauses’.  

One particularly useful check is that of the search for 
redundant throws clauses. These are particularly irritating 
code smells, as they can introduce unnecessary try-catch 
blocks and confuse the intent of the code. Both IDEA and 
Eclipse can eradicate redundant ‘throws’ clauses, albeit in 
different ways. The two IDEs supply automatic 
refactorings for this code smell. 

In IDEA and Eclipse, the automatic detection of these 
code smells is also very often followed by the option of 
performing an automatic refactoring. The developer will 
see a list of the line numbers linked to the code smells 
occurring in specific classes. Eclipse will highlight the 
code smells in yellow and normally provide an automated 
refactoring suggestion by a clickable icon on the left hand 
side of the code. IDEA provides a synopsis of the 
refactorings or techniques available to eradicate the code 
smell. The developer needs to select the refactoring 
proposed by the refactoring tool to execute it. Eclipse’s 
detection mechanisms are done through its compiler, 
while IDEA relies on static code analysis. 

These features allow one to further automate the 
removal of code smells, without having to look for them 
for hours or to know the needed refactorings by heart. If a 
developer is provided with knowledge of how to map the 
code smells with the corresponding analysis checks then 
most of the hard work is already done.  

Knowing all of the code smells and resulting 
refactorings to apply can be a problem, if these mappings 
are not provided, especially when one considers 
developers who are trying to learn how to refactor. The 
fact that there are over 20 basic code smells, 30 
refactorings possible in the IDE, and over 70 refactorings 
in total to learn makes the learning curve for refactoring 
rather steep.  

Even though the refactorings in Eclipse and IDEA are 
automated, Fowler [1999] still suggests that automatic 
refactorings need to be performed sequentially and unit 
tested accordingly. There are however fully automated 
code smell detections which are done by compilers and 

687



thus deemed to be exempt from the need to re-test after a 
refactoring is performed. This is not the case in Eclipse’s 
compiler, which still needs human intervention to ensure 
correctness, even with the knowledge that the compiler 
performed the code smell checking and should therefore 
have picked a code smell which could be refactored 
without errors. We explain why this is so in the following 
paragraphs.  

Developer intervention in refactoring is vital as [Mens 
2004] points out; fully automated refactoring tools can 
make the code look worse after the refactoring has taken 
place, by doing too many refactorings. Compiler 
refactorings seem rather trivial at first when one considers 
that they have to do more with unread local method 
variables or unread private class member variables or 
methods, which can be removed without causing any 
impact on the surrounding code. If setup correctly Eclipse 
can automatically detect and highlight these code smells 
as soon as one opens a class. These smells are normally 
deeply hidden and hard to weed out. Eclipse can quickly 
remove these smells without much developer 
intervention. One can just click on the code smell 
warning icon and a solution to code smell is provided and 
performed with one click of the mouse button. The 
developer is able to setup the compiler environment so as 
to take note or ignore these code smells when compiling a 
project or dynamically compiling a class upon entry. 

In large projects these code smells are rather serious, 
especially when a large class with big methods has been 
edited by several developers, who unknowingly left 
behind several unused variables and methods. These code 
smells make the code far harder to understand and less 
readable, increasingly polluting the code, and after a 
couple of years can cause severe maintenance problems. 
The project we where busy with during our research had 
code that was 4 years old and mostly the large classes 
which where used most often by all developers were 
affected by this type of code smell. With a CVS tool one 
is able to safely delete this type of code and retrieve it 
from previous versions if needed. 

The concern we have with Eclipse’s approach and thus 
automatic compiler refactorings in general is in the case 
where unused variables are initialized via constructors or 
methods. The code executed in the constructors or 
methods themselves could have unwanted side effects 
even if the variable, to which the class instance or 
primitive value is assigned, is not used. For example lets 
assume that in “int i = x();”, variable i is not used and the 
method x() has side effects. If the unused variable i is 
deleted along with the method x(), then this will cause a 
change in behavior if the rest of the program depends on 
the side effects of x().  

Such side effects are bad programming in the first 
place, but we cannot be assured that they do not exist 
when refactoring unused code. Therefore there are still 

cases where human intervention is required and even 
compilers cannot free us from having to test refactorings 
to ensure their required behavior preserving properties. 
We can therefore conclude that compiler code smell 
checks can still result in behavior changes once a 
refactoring removes the smell. There is no reason why 
such behavior changes cannot occur in fully automated 
refactoring approaches as described in [Mens 2004]. 

A simple approach to ensure behavior preservation 
with compiler refactoring is to eliminate the unused 
variables but to ensure that the method and constructor 
logic is still called. Otherwise careful analysis of the 
constructor and/or method code is required to protect 
against unwanted side-affects. 

 
3. Conclusion and future work 
 

We intend to continue to delve into research topics that 
make refactoring easier to accomplish. We can see from 
the above tool survey that there are very good tools which 
help one accomplish refactoring rather painlessly. We are 
also investigating contributing to the refactoring tool 
support of Eclipse. We will do this by developing a 
refactoring plug-in or smell-detection framework for 
Eclipse. 
 
4. References 
 
[Garlan 1994] GARLAND, D, SHAW, M: An Introduction to 
Software Architecture, Carnegie Mellon University 
 
[Fowler 1999] FOWLER, MARTIN. Refactoring: Improving 
the Design of Existing Programs. Addison-Wesley, 1999. 
 
[Beck 2000], Beck, K, Fowler, M: Planning Extreme 
Programming, Addison Wesley 
 
[Kerievsky 2004] KERIEVSKY, JOSHUA: Refactoring to 
Patterns, Addison Wesley, 
http://www.industriallogic.com/xp/refactoring/index.html, 
accessed 2005-08-15 
 
[Mens 2004], MENS, T and TOURWÉ, T: A Survey of Software 
Refactoring, IEEE Transactions on software engineering, VOL. 
XX, NO. Y, MONTH 2004  
 
[Shore 2004], JIM, SHORE: Continuous Design, 
http://martinfowler.com/ieeeSoftware/continuousDesign.pdf, 
accessed 2005-08-11 
 
[Fowler 2005] FOWLER, MARTIN: A list of refactoring tools 
for several languages, http://www.refactoring.com/tools.html, 
accessed 2005-08-13 
 
[Van Kempen 2005] VAN KEMPEN, MARC: Studies into 
Refactoring of Software Architectures, Technishe Universiteit 
Eindhoven, Masters Thesis 

688


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



